y-axis
↑
| A(x, y)
| /|
|/r| y
θ | |
──────────────────O──+──────→ x-axis
x
Where:
• r = √(x² + y²) (distance from origin)
• sin θ = y/r
• cos θ = x/r
• tan θ = y/x
Coordinate-based Trigonometric Ratios:
sin θ = yr
cos θ = xr
tan θ = yx
Cartesian Coordinates:
r² = x² + y² (Pythagoras)
sin θ = yr
cos θ = xr
tan θ = yx
🎯 Interactive Triangle Solver
Triangle MNP with right angle at N. Angle α at M, Angle β at P.
🧭 10.2 Trig Ratios in All Quadrants
CAST Rule Diagram:
II | I
(S)in | (A)ll
-------+-------
(T)an | (C)os
III | IV
CAST Rule - Positive Functions by Quadrant:
• Quadrant I (0° to 90°): All positive (sin, cos, tan)
• Quadrant II (90° to 180°): Sin positive only
• Quadrant III (180° to 270°): Tan positive only
• Quadrant IV (270° to 360°): Cos positive only
🎯 Quadrant Analyzer
Practice Questions:
Q1: If sin θ < 0 and cos θ> 0, which quadrant? Answer: Quadrant IV (270° < θ < 360°)
Q2: If tan θ < 0 and cos θ < 0, which quadrant? Answer: Quadrant II (90° < θ < 180°)
🔺 10.3 Solving Triangles with Trigonometry
🎯 Advanced Triangle Solver
Example: Given tan θ = -√31, where 180° < θ < 360°
Custom Problem Solver
Given cos β = p√5, where p < 0 and β ∈ [180°; 360°]
Proof Strategies:
• Start with the more complex side
• Convert all to sin and cos
• Use fundamental identities
• Find common denominators
• Factor when possible
Example Proof: sin x · tan x + cos x = 1cos x
LHS: sin x · tan x + cos x
= sin x · sin xcos
x + cos x
= sin²xcos
x + cos x
= sin²xcos
x + cos²xcos x
= sin²x + cos²xcos
x = 1cos x = RHS ✓
📐 10.9 Solving Trigonometric Equations
Solution Steps:
1. Isolate the trigonometric function
2. Find the reference angle
3. Use CAST to determine quadrants
4. Write solutions for [0°, 360°)
5. Add periodic terms for general solution
🎯 Equation Solver
Reference Angle:
General Solution:
Example: Solve 3 tan x + √3 = 0
Step 1: 3 tan x = -√3
Step 2: tan x = -√33
Step 3: Reference angle = 30°
Step 4: tan < 0 in Q2 and Q4
Step 5: x = 150° + k·180°, k ∈ ℤ
➕ 10.11 Compound & Double Angle Identities
Compound Angle Identities:
sin(α ± β) = sin α cos β ± cos α sin β
cos(α ± β) = cos α cos β ∓ sin α sin β
Double Angle Identities:
sin 2α = 2 sin α cos α
cos 2α = cos²α - sin²α = 2cos²α - 1 = 1 - 2sin²α
🎯 Example Applications
Simplify: 2 sin 15° cos 15°
= sin(2 × 15°) = sin 30° = 12
Find: sin 15°
= sin(45° - 30°) = sin 45° cos 30° - cos 45° sin 30°
= √6 - √24
⚠️ 10.12 Undefined Cases
An identity is undefined when:
• Any denominator equals zero
• tan θ appears and θ = 90° + k·180°
• Division by a trigonometric function that equals zero
Example: When is 1tan
x + tan x = tan xsin²x undefined?
1. tan x = 0 (denominator in first term): x = k·180°